Endocrine Journal
Online ISSN : 1348-4540
Print ISSN : 0918-8959
ISSN-L : 0918-8959
ORIGINALS
Mechanism of repression of 11β-hydroxysteroid dehydrogenase type 1 by growth hormone in 3T3-L1 adipocytes
Toko MuraokaNaomi HizukaIzumi FukudaYukiko IshikawaAtsuhiro Ichihara
Author information
JOURNAL FREE ACCESS

2014 Volume 61 Issue 7 Pages 675-682

Details
Abstract

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an NADPH-dependent reductase that converts cortisone to cortisol in adipose tissue. We previously reported that GH and IGF-I decrease 11β-HSD1 activity and mRNA levels in adipocytes. Hexose-6-phosphate dehydrogenase (H6PDH) is involved in the production of NADPH, which is a coenzyme for 11β-HSD1. The aim of the present study was to clarify further the mechanism of repression of 11β-HSD1 activity by GH using linsitinib, an IGF-I receptor inhibitor. The suppression of 11β-HSD1 mRNA by IGF-I was attenuated in the presence of 1 μM linsitinib (17.2% vs. 53.3% of basal level, P<0.05). 11β-HSD1 mRNA levels in cells treated with GH in the presence of 1 μM linsitinib were not different from those in absence of linsitinib (35.9% vs. 33.9%). The increase in IGF-I mRNA levels with GH and 1 μM linsitinib was not different from that in the absence of linsitinib (359% vs. 347%). H6PDH mRNA levels were significantly decreased in cells treated with IGF-I for 8 and 24 h (55.6% and 33.7%, P<0.05). In the presence of 1 μM linsitinib, there was no repression of H6PDH mRNA (111.4%). H6PDH mRNA levels were significantly decreased in cells treated with GH in the absence of linsitinib for 24 h (55.9%, P<0.05), but not for 8 h (89.5%). The presence of 1 μM linsitinib also prevented repression of H6PDH mRNA by GH over 24 h (107.8%). These results suggest that GH directly represses 11β-HSD1 mRNA rather than acting via the IGF-I receptor, and that GH represses H6PDH through locally produced IGF-I.

Content from these authors
© The Japan Endocrine Society
Previous article Next article
feedback
Top