The Tohoku Journal of Experimental Medicine
Online ISSN : 1349-3329
Print ISSN : 0040-8727
ISSN-L : 0040-8727
Regular Contributions
Enhanced Liver Autophagic Activity Improves Survival of Septic Mice Lacking Surfactant Proteins A and D
Zhe TangLan NiSara JavidiparsijaniFengqi HuLouis A GattoRobert CooneyGuirong Wang
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2013 Volume 231 Issue 2 Pages 127-138

Details
Abstract

Autophagy is a protective cellular mechanism in response to various stresses, including sepsis. Sepsis is defined as systemic inflammation by infection. Surfactant protein A and D (SP-A and SP-D) are involved in host defense, regulation of inflammation, and homeostasis, but their roles in the autophagic activity and relevant gene expression in sepsis are unclear. In this study, mice lacking SP-A and SP-D (SP-A/D KO mice) and background-matched wild-type (WT) C57BL/6 mice underwent either cecal ligation and puncture (CLP) or sham surgery. The results showed that SP-A/D KO mice had lower mortality than WT mice in CLP sepsis. Liver tissues showed marked pathological changes in both septic SP-A/D KO and WT mice 24 hrs after CLP treatment; and quantitative analysis of liver histopathology revealed significant difference between septic SP-A/D and septic WT mice. SP-A/D KO mice had higher basal and sepsis-induced level of autophagy than WT mice (p < 0.05), as judged by Western blot and electron microscopic analyses. The expression of 84 autophagy-related genes revealed differential basal and sepsis-induced gene expression between SP-A/D KO and WT mice. The expression increased in three genes and decreased in four genes in septic WT mice, as compared to septic SP-A/D KO mice (p < 0.05). Furthermore, differential responses to sepsis between SP-A/D KO and WT mice were found in six signaling pathways related to autophagy and apoptosis. Therefore, enhanced autophagic activity improves the survival of septic SP-A/D KO mice through the regulation of liver autophagy/apoptosis-related gene expression and signaling pathway activation.

Content from these authors
© 2013 Tohoku University Medical Press
Previous article Next article
feedback
Top