材料
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
論文
CFRP一方向積層板および直交積層板における高速衝撃損傷
黄木 景二田中 孝明矢代 茂樹吉村 彰記
著者情報
ジャーナル フリー

2011 年 60 巻 5 号 p. 418-424

詳細
抄録

This paper aims at characterizing the high-velocity impact damage behavior in carbon fiber reinforced plastic (CFRP) unidirectional (UD) and cross-ply (CP) laminates. First, the surface and internal damages of CFRP plates impacted at a velocity of 200 and 430m/s were observed by using optical microscopy together with radiography. Next, dynamic finite element analysis was performed to simulate the damage process. Cohesive elements were introduced to express the delamination and splitting cracks while the maximum stress fracture criteria were employed to express the intralaminar failure. Finally, the simulations were compared with the experiment results to verify the reasonability of the analysis. The damage process in both laminates was as follows : 1. A crater accompanied by splitting cracks is generated at the impact point on the front surface while splitting cracks due to bending are observed on the back surface. 2. Cone-shaped matrix cracking is observed in the UD laminate while few matrix cracking is generated in the CP laminate. 3. The shape of the delamination in the UD and CP laminates is a galaxy and a circle, respectively. Delamination size is larger in the CP laminate than in the UD laminate, which results in higher energy absorption capability in the CP laminate. Simulations are in qualitatively good agreement with the experiment results.

著者関連情報
© 2011 日本材料学会
前の記事 次の記事
feedback
Top